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Constructing a Tunable Chemical Oscillator
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CuernaVaca, Morelos, México, and Department of Physics, Indian Institute of Technology Bombay,
Powai, Mumbai 400076, India

ReceiVed: October 20, 2008; ReVised Manuscript ReceiVed: December 23, 2008

The possibility of designing a tunable chemical oscillator is explored. In contrast to a normal oscillator which
when subjected to external forcing exhibits the characteristic unimodal resonance curve, a tunable oscillator
reveals a constant response curve. This persistence of resonant behavior for a wide interval of forcing
frequencies is seeked both numerically and in an experimental electrochemical cell. Our results indicate that,
although challenging, a tunable chemical oscillator can indeed be conceived.

1. Introduction

Periodic forcing of oscillating systems has been exhaustively
investigated in diverse electrical,1,2 chemical,3,4 and biological5

systems. As a consequence of the underlying entrainment
phenomena these forced systems exhibit a variety of different
dynamical responses such as periodic, quasi-periodic, and
chaotic behavior. Another aspect of periodically forced self-
oscillating systems, which in comparison has received much
less attention, involves the generation of multiple coexisting
attractors (multistability)6,7 for an appropriate perturbing func-
tion. It is widely accepted that most of the results for forced
oscillating systems remain valid for oscillators operating in the
fixed point regime, for example, exhibiting excitable fixed point
behavior.8 The only requirement is that the superimposed forcing
be superthreshold thereby ensuring that the oscillatory domain
is frequently visited.

Simpler dynamics are observed for the scenario wherein the
external forcing is subthreshold. For an overdamped oscillator
(dynamics exhibiting stable node behavior), the system response
decreases monotonically as the forcing frequency is augmented.
In contrast, scanning the perturbation frequency (maintaining
amplitude constant) invokes the classical resonance curve for
an underdamped oscillator (dynamics exhibiting stable focus
behavior). The peak of this unimodal curve (maximal response)
occurs for the resonant frequency. The possibility of designing
an oscillator that would be able to exhibit maximal response
not just for one frequency but for a wide interval of forcing
frequencies is rather enticing. It would entail the construction
of an oscillator which could be tuned in accordance to the
frequency of the superimposed perturbation. Apart from being
an interesting and challenging scientific problem, designing of
such an oscillator might have some correspondence to the
functioning of the human auditory system. It is well-known that
the human ear detects signals in the audible range (20-20000
Hz) with commensurable efficiency. Although the underlying

nature of the auditory system is extremely intricate and involves
complex biochemical processes, there have been some reports9,10

claiming that auditory sensitivity is provided by the self-tuned
critical oscillations of hair cells in the inner ear. Previous
endeavors involving the configuration of tunable oscillators have
involved vibrating soap films11 and vibrating strings with freely
sliding metal beads.12 Adaption in these systems occurs naturally
(self-adaptive) due to the inherent properties of the system,
namely, the availability of an extra (free) degree of freedom.
In stark contrast to these previous works, in the present
contribution we entertain the possibility of devising a tunable
chemical oscillator which does not possess a free internal
degree of freedom and therefore normally would not exhibit
adaptive behavior. Numerical simulations, using a corrosion
model, were carried out as a precursor to subsequent experi-
mental endeavors employing an electrochemical cell.

2. Simulation Results

To design a tunable oscillator numerically, the following
corrosion/passivation model described by two dimensionless
coupled nonlinear differential equations is used

Ẏ) p(1- θOH)- qY (1)

θ̇OH ) Y(1- θOH)- [exp(-�θOH)]θOH (2)

The two variables θOH and Y represent the fractional coverage
of the electrode surface covered by a passivating metal
hydroxide film and the concentration of metal ions in the
electrolytic solution, respectively. The kinetic rate constants of
the governing chemical reactions determine the values for the
system parameters p, q, and �. Prior numerical studies13,14

indicate that this model system exhibits stable focus dynamics
for appropriate parameter values. The model equations are
numerically integrated using a fourth-order Runge-Kutta
algorithm with a constant step size of h ) 1. The sinusoidal
modulation, p(t) ) p0(1 + A sin(ωt)) where p0 ) 1.31 × 10-4,
of the system parameter p represents the superimposed external
forcing. Figure 1a shows the stable focus behavior of the
autonomous system whereas in Figure 1b the resonance curve
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for the forced system is presented. The model and the forcing
parameters are provided in the corresponding figure caption.

In order to achieve tuning numerically, model parameters that
change the intrinsic frequency νi of the model dynamics need
to be identified. Thereafter, as the frequency νe of the external
forcing is varied, these model parameters need to adjust
appropriately such that the condition νi ) νe is constantly
satisfied. The first obvious numerical parameter that changes νi

is the model speed S. Multiplying the right-hand sides of eq 1
and eq 2 with a constant factor (S) alters the frequency (νi) of
the dissipative dynamics in the vicinity of the stable focus.
Figure 2a shows the expected linear variation of νi as a function
of the S. The bifurcation/control parameter p also modifies the
intrinsic frequency of the model dynamics as shown in Figure
2b. Subsequently, using linear approximation, if necessary, (∆νi/
∆S) and (∆νi/∆p) need to be computed for the two curves.
Evidently, in Figure 2b this would restrict the frequency interval
for which tuning could be attained. In the case of parameter S,
the relation νi(S) ) 0.0014169S is derived using the curve of
Figure 2a. Inverting this previous equation and using the tuning
condition (νi ) νe) yields S(νe) ) 705.766νe, the functional form
for the tuning parameter S that ensures adaptation. An identical
analysis for the parameter p (Figure 2b) gives νi(p) ) (353.74p
+ 0.0033963) which subsequent to appropriate inversion reveals
p(νe) ) (νe - 0.0033963)/353.74 as the seemingly adequate
variation for the tuning parameter p to achieve tunability.

Figure 3 shows the numerical results involving tuning
behavior in the corrosion model. The successful adaptation in
the forced oscillator is exemplified by the persistence of the

maximal response for a range of values of νe. Correspondingly,
the characteristic unimodal resonance curve is replaced by a
constant response. Although the tuning using parameter S
directly yields the straight line response presented in Figure 3a,
the resonance curve presented in Figure 3c, using parameter p,
can only be calculated subsequent to a suitable scaling procedure
for the following reason: Increasing the bifurcation parameter
p the system dynamics evolve from a stable node behavior (over
damped), to a stable focus behavior (under damped) and
eventually nearing the supercritical Hopf bifurcation point.
Accordingly, as shown in Figure 3b, the maxima of the provoked
resonance curve increases as the parameter p approaches the
Hopf bifurcation point. Therefore, varying the parameter p
changes not only the intrinsic frequency (νi) of the system but
also the maximum attainable amplitude. As a result, even in
the case of successful adaptation, the absolute value of the
maximum provoked response would not maintain constant.
However, if one appropriately scales the response amplitudes
(in comparison to the maxima of the corresponding resonance
curve) for different forcing frequencies, a reasonable adaptation
can be achieved, as shown in Figure 3c.

3. Experimental Results

The next stage of the present work involves designing a
tunable oscillator experimentally in a three-electrode electro-
chemical cell. This system is related to the electrochemical
model discussed before since the underlying chemical processes
in both cases involve the electrochemical corrosion (electro-
dissolution) of the metal surface in an aqueous media. Therefore,
the generic electrodissolution model captures qualitatively some
of the dynamical behavior observed experimentally.

Figure 1. The numerical dynamics for the corrosion/passivation model.
The model parameters are chosen, {p, q, �} ) {1.31 × 10-4, 1.0 ×
10-3, 5.0}, such that the autonomous dynamics exhibit a stable focus
behavior. All the plotted quantities are dimensionless. (a) The dissipative
under damped dynamics in the vicinity of the stable focus fixed point.
(b) The resonance curve obtained when the model parameter p is
modulated sinusoidally p ) p0(1 + A sin(ωt)) where p0 ) 1.31 × 10-4.
A, the forcing amplitude, is kept constant at A ) 1 × 10-6 whereas ω,
the forcing frequency, is varied. The quantity θOH

2, plotted in the
resonance curve of Figure 1b is the square of the oscillation amplitude
for the model variable θOH.

Figure 2. The variation of the intrinsic frequency νi as a function of
the two appropriate model parameters S and p. All the plotted quantities
are dimensionless. (a) The linear variation of the intrinsic frequency νi

as a function of the model speed S. The other model parameters are
maintained constant {p, q, �} ) {1.31 × 10-4, 1.0 × 10-3, 5.0}. (b)
The variation of the intrinsic frequency νi as a function of the bifurcation
parameter p. The other parameters {S, q, �} ) {2.5, 1.0 × 10-3, 5.0}
remain constant.
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The anode and cathode of this cell are identical carbon steel
disk (7 mm diameter) electrodes shrouded by epoxy, whereas
the reference is the saturated calomel electrode (SCE). These
three electrodes are immersed in a sodium chloride NaCl
solution 10% in weight, and a volume of 500 mL is maintained
in the electrochemical cell.15-17 The experiments are carried out
potentiostatically such that the anodic potential (V) between the
anode and reference is maintained constant whereas the anodic
current (I) between the anode and cathode is recorded for
analysis. This experimental configuration is of extreme industrial
relevance and has been used before to replicate the corrosion
environment of carbon steel, the material commonly employed
in the construction of pipelines used to transport seawater
(hydrocarbons). Previous studies17 indicate that the interval of
anodic voltage -900 mV < V0 < -600 mV is of interest for
the present experiments.

Experimental resonance curves are generated via periodic
modulations of the anodic voltage (V ) V0(1 + A sin(2πνpt)).
Figure 4a shows three of the seven experimental resonance
curves calculated for different anodic voltages (V0). In contrast
to the numerical curves presented in Figure 3b where varying
the control parameter (p) changed the intrinsic frequency as well

as the provoked amplitude, the experimental curves (Figure 4a)
indicate that the maximal provoked amplitude essentially
remains unchanged. Similar to the numerical calculations, a
linear function νi(V) ) 10(V - 210)/3 Hz is obtained. Inverting
the functional form in conjunction with the tunability condition
(νi ) νe) divulges the voltage variation, V(νe) ) 0.3(νe) + 210
mV, that should achieve a constant resonance curve. In this
tunability condition, the constants 0.3 (slope) and 210 mV
(intercept) are inherent to the electrochemical cell and are a
measure of the response/stimulus factor of the experimental
system when subjected to external forcing. Moreover, this
tunability condition remains valid in the parameter interval
where the autonomous systems exhibits underdamped dynamics
(stable focus behavior) in the vicinity of the Hopf bifurcation.
Figure 4b shows the experimental resonance curves with and
without tuning. The almost straight line with experimental data
points (represented by asterisks) divulges the persistence of a
constant system response for an external frequency interval of
about 1000 Hz.

4. Discussion

The numerical parameter p and the experimental parameter
V used to achieve tuning are comparable. An analogous to the
numerical parameter S in the experimental chemical system
could be temperature which, in our experiments, did increase
the frequency of the oscillations. Unfortunately, we did not have

Figure 3. Numerical results indicating attainment of tunable
behavior using the protocol involving linearization and inverting
functions as explained in the text. All the plotted quantities are
dimensionless. (a) The resonance curves without (unimodal) and
with (straight line) adaptation using the speed parameter S. (b) The
different resonance curves provoked using the parametric forcing p
) p0(1 + A sin(ωt)) for five values of p0 (1.3015 × 10-4, 1.3045 ×
10-4, 1.3075 × 10-4, 1.3105 × 10-4, 1.3135 × 10-4). The maximal
attainable amplitude augments as p0 is increased since the system
progresses from the overdamped f underdamped dynamics eventu-
ally approaching the Hopf bifurcation. The other model parameters
{S, q, �} ) {2.5, 1.0 × 10-3, 5.0} remain constant. (c) Resonance
curve (subsequent to a suitable scaling) indicating the tunable
behavior using the bifurcation parameter p.

Figure 4. Experimental results indicating attainment of adaptation of
the anodic current (I (mA)) using the tuning protocol involving
linearization and function inverting as described in the text. (a) Three
of the seven experimental resonance curves computed to calculate (∆νi)/
(∆V). The ones presented correspond to anodic voltages of 600 mV
(circles), 750 mV (squares), and 900 mV (triangles), respectively. (b)
The resonance curves without (unimodal) and with (asterisk) tuning
using the experimental bifurcation parameter V. The quantity I2 plotted
in the resonance curve is the square of the oscillation amplitude for I,
the experimental variable. The parameter V ) V0(1 + A sin(2πνt)) is
modulated continuously with V0 ) 750 mV and A ) 60 mV. It is
remarkable that adaptation can persist for a frequency interval of about
1000 Hz.
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the necessary infrastructure to attempt tuning with temperature
in our electrochemical cell.

To summarize, a tunable oscillator was constructed both
numerically and experimentally. Although the present results
involve adaptation in an electrochemical system, the tuning
method is general and therefore valid for all classes of nonlinear
oscillators. The two necessary conditions for the implementation
of this tuning protocol are as follows: (a) The nonlinear system
exhibits underdamped dynamics (stable focus behavior). (b)
There exists an accessible system parameter which can vary
the intrinsic frequency of the nonlinear system. We were also
able to construct a tunable oscillator for the FitzHugh-Nagumo
model system wherein the dynamics are inherently excitable
(results not shown). This points to the applicability of our tuning
protocol to different types of autonomous behavior. This method,
in actual experiments, could also be used for detecting the
location of Hopf bifurcations in the parameter space. The
increase in the maximal response amplitude of the tuned system
would be an indication that the autonomous dynamics is
approaching the bifurcation point.

Previous works in this direction involved special systems such
as vibrating strings and soap films which were able to self-
adapt due to an internal degree of freedom. However the
majority of the real systems do not possess this extra degree of
freedom and consequently cannot exhibit self-adaptation. Our
method could enable such systems to tune with external forcing.
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